MODULE HOMOMORPHISMS OF A VON NEUMANN ALGEBRA INTO ITS CENTER(1)

BY HERBERT HALPERN

1. Introduction. A tool for studying von Neumann algebras is the space of σ-weakly continuous linear functionals. There are certain limitations in the applicability of this tool because the center of the algebra is somehow submerged and on the whole it seems σ -weakly continuous functionals are more suitable for studying factor algebras. In this article we propose another tool, viz. the σ -weakly continuous module homomorphisms of the von Neumann algebra A, considered as a module over its center \mathscr{Z} , into \mathscr{Z} . First it is shown that every σ -weakly continuous linear functional can be written as the composition of a σ-weakly continuous module homomorphism into \mathscr{Z} and a σ -weakly continuous linear functional on \mathscr{Z} . For these module homomorphisms there is obtained a specific form which generalizes the well-known form of σ -weakly continuous linear functionals ([1], [16]). Certain facts concerning decomposition theory result. Further \mathcal{A} is the dual (in terms of module homomorphisms) of the space of all σ -weakly continuous module homomorphisms of \mathcal{A} into \mathcal{Z} . As an example of the applicability of this tool a type I algebra is described as the second dual (in terms of module homomorphisms) of a module. Further applications are contained in a later paper.

It seems reasonable to conjecture from the ensuing proofs that considering the module structure might further illuminate the relation between a von Neumann algebra and an AW^* -algebra.

2. Extension of homomorphisms. Let \mathscr{Z} be a commutative von Neumann algebra. An algebraic \mathscr{Z} -module \mathscr{M} with norm $\|\cdot\|$ will be called a Banach \mathscr{Z} -module if (1) \mathscr{M} is a Banach space, and (2) $\|CB\| \le \|C\| \|B\|$ for every $C \in \mathscr{Z}$ and $B \in \mathscr{M}$. A module homomorphism of \mathscr{M} into \mathscr{Z} will be called a functional and the set of all bounded functionals of the module \mathscr{M} will be denoted by \mathscr{M}^{\sim} . The space \mathscr{M}^{\sim} with the operator bound is again a Banach \mathscr{Z} -module. If \mathscr{A} is a von Neumann algebra with center \mathscr{Z} , then \mathscr{A} is a Banach \mathscr{Z} -module. Whenever we talk about the module \mathscr{A} , we shall have this particular module in mind. A functional ϕ of the module \mathscr{A} is said to be hermitian (resp. positive) if $\phi(A)$ is hermitian (resp. positive) in \mathscr{Z} whenever A is hermitian (resp. positive) in \mathscr{A} . A positive functional ϕ of the algebra (resp. module) \mathscr{A} is said to be normal if lub $\phi(A_n) = \phi(A)$ for any monotonely increasing net $\{A_n\}$ of hermitian elements of \mathscr{A} with least upper bound A.

Received by the editors January 23, 1969 and, in revised form, July 11, 1968.

⁽¹⁾ This work was partially supported by the National Science Foundation.

Then the positive functional ϕ is a normal functional of the algebra (respectively, module) \mathscr{A} if and only if ϕ (resp. the composition $f \cdot \phi$) is an element of the associated space \mathscr{A}_* of \mathscr{A} (resp. for every f in the associated space \mathscr{Z}_* of \mathscr{Z}) [2, I, §4, Theorem 1]. If E is an abelian projection with central support P of the commutator \mathscr{Z}' of \mathscr{Z} , then $CP \to CE$ is an isomorphism of $\mathscr{Z}P$ onto $E\mathscr{Z}'E$. For each A in \mathscr{Z}' let $\tau_E(A)$ denote the inverse image of EAE under this isomorphism. The map τ_E restricted to \mathscr{A} is then easily seen to be a normal functional of the module \mathscr{A} .

The following theorem shows the relation between functionals of \mathscr{A} and the module \mathscr{A} .

Theorem 1. Let \mathscr{A} be a von Neumann algebra with center \mathscr{Z} and let f be a normal functional on \mathscr{A} . Then there is a normal functional ϕ of the module \mathscr{A} with $\phi(1)$ equal to the support P of f restricted to \mathscr{Z} such that $f=f\cdot\phi$. The functional ϕ is unique in the following sense: if ψ is a functional of the module \mathscr{A} with $f=f\cdot\psi$, then $P\psi(A)=\phi(A)$ for every A in \mathscr{A} .

Proof. We may assume $f \neq 0$. Let Φ be the canonical representation of $\mathscr A$ on a Hilbert space H induced by f and let x be a cyclic vector under $\Phi(\mathscr A)$ in H such that $f(A) = w_x \cdot \Phi(A) = (\Phi(A)x, x)$ for every A in $\mathscr A$ [2, I, §4]. There is a central projection Q such that $\mathscr A(1-Q)$ is the kernel of Φ and such that Φ carries $\mathscr A$ Q isomorphically onto $\Phi(\mathscr A)$. We observe that 1-P is in the kernel of Φ and so $Q \leq P$. However, $f(P-Q) = w_x(\Phi(P-Q)) = 0$; therefore P = Q. Now the inverse θ of Φ restricted to $\mathscr AP$ is a σ -weakly continuous homomorphism of $\Phi(\mathscr A)$ onto $\mathscr AP$ [2, I, §4, Corollaries, Theorem 2]. Let E be the abelian projection of the commutator $\Phi(\mathscr A)'$ of $\Phi(\mathscr A)$ on H corresponding to the subspace closure $\{Ax \mid A \in \Phi(\mathscr A)\}$ [2, I, §2, no. 1, and §6, Proposition 4, Corollary 2]. Let $\tau = \tau_E$. Then we can easily verify that the functional $\Phi = \theta \cdot \tau \cdot \Phi$ of the module $\mathscr A$ into $\mathscr AP$ is normal, and that $f(A) = f(\Phi(A))$.

Now let ψ be a functional of the module \mathscr{A} such that $f \cdot \psi = f$. There is a vector y in the Hilbert space of \mathscr{A} such that $f = w_y$ on \mathscr{Z} [2, III, §1, Corollary to Theorem 4]. We have that $(\psi(A)By, Cy) = (\phi(A)By, Cy)$ for every B and C in \mathscr{Z} and every A in \mathscr{A} . If F is the projection corresponding to closure $\{By \mid B \in \mathscr{Z}\}$, then $\psi(A)F = \phi(A)F$ for every A in \mathscr{A} . Because the central support of F is P, we have that $\psi(A)P = \phi(A)$ for every A in \mathscr{A} . Q.E.D.

We now determine the form of a normal functional in terms of the trace class (cf. [9, §4]).

THEOREM 2. Let \mathscr{A} be a von Neumann algebra on a Hilbert space H. If ϕ is a normal functional of the module \mathscr{A} , then there is a positive element B in the trace class of the commutator \mathscr{L}' of the center \mathscr{L} of \mathscr{A} such that $\phi(A) = \operatorname{Tr}(AB)$.

Proof. There is a set $\{P_i \mid i \in S\}$ of mutually orthogonal projections of \mathscr{Z} of sum 1 such that each algebra $\mathscr{Z}P_i$ on P_iH has a separating unit vector x_i [2, I, §2]. Since the functional $w_{x_i} \cdot \phi = f_i$ restricted to $\mathscr{A}P_i$ is normal, there is a normal functional g_i of the commutator $\mathscr{Z}'P_i$ of $\mathscr{Z}P_i$ on P_iH that coincides with f_i on $\mathscr{A}P_i$. However, by

Theorem 1 there is a normal functional ψ_i of the module $\mathscr{Z}'P_i$ such that $\psi_i(P_i) \leq P_i$ and $g_i \cdot \psi_i = g_i$. There is a y_i in P_iH such that $g_i(A) = (Ay_i, y_i)$ for every A in $\mathscr{Z}P_i$. Then $(Ay_i, y_i) = f_i(A) = (A\phi(1)x_i, x_i)$ for every A in $\mathscr{Z}P_i$. So $(\phi(1)\psi_i(A)Bx_i, Cx_i) = (\phi(A)Bx_i, Cx_i)$ for every A in $\mathscr{A}P_i$ and B and C in $\mathscr{Z}P_i$. Because x_i is separating for $\mathscr{Z}P_i$ we see that $\phi(A) = \phi(1)\psi_i(A)$ for every A in $\mathscr{A}P_i$. There is a unique positive element B_i in the trace class of $\mathscr{Z}'P_i$ such that $\phi(1)\psi_i(A) = \operatorname{Tr}(AB_i)$ for every A in $\mathscr{Z}'P_i$ [9, Theorem 4.13]. But for every finite subset π of S we have that $\operatorname{Tr}(\sum_{\pi} B_i) \leq \phi(1)$. So $B = \sum_i B_i$ is a positive element of the trace class of \mathscr{Z}' such that $\operatorname{Tr}(AB) = \phi(A)$ for every A in \mathscr{A} since $\operatorname{Tr}(AB)P_i = \operatorname{Tr}((AP_i)B_i) = \phi(AP_i) = \phi(A)P_i$ for every P_i . Q.E.D.

COROLLARY. Let \mathscr{A} be a von Neumann algebra with center \mathscr{Z} . If ϕ is a normal functional of the module \mathscr{A} , there is a monotone decreasing sequence $\{B_n\}$ of elements in \mathscr{Z}^+ and an orthogonal sequence $\{E_n\}$ of abelian projections of the commutator \mathscr{Z}' of \mathscr{Z} such that (1) $\lim B_n=0$ (uniformly); (2) $\sum B_n$ is bounded above; and (3) $\phi(A)=\sum B_n\tau_{E_n}(A)$ for every $A\in\mathscr{A}$.

Proof. This results from [9, §2 and §4].

REMARK. Theorem 2 gives rise to a representation of a normal functional f on a von Neumann algebra $\mathscr A$ as an integral over the spectrum Z of the center $\mathscr Z$ of $\mathscr A$. Let ν be the so-called spectral measure on Z induced by the relation $f(A) = \int_Z A^{\hat{}}(\zeta) \, d\nu(\zeta) \, (A \in \mathscr Z)$. Here $A^{\hat{}}$ denotes the Gelfand transform of A in $\mathscr Z$. There is a positive element B in the trace class of the commutator of $\mathscr Z$ such that $f(A) = f(\operatorname{Tr}(AB)) = \int \operatorname{Tr}(AB)^{\hat{}}(\zeta) \, d\nu(\zeta)$. In the same notation as the preceding corollary let $f_{n\zeta}(A) = (B_n \tau_{E_n}(A))^{\hat{}}(\zeta)$ for every $\zeta \in Z$. Then $f_{n\zeta}$ is a positive functional on $\mathscr A$ whose kernel contains the ideal ζ in Z. If $\mathscr A$ is discrete, the nonzero $f_{n\zeta}$ are irreducible (cf. [8, Proposition 2.1]). If $\mathscr A$ is continuous, then $f_{n\zeta}(1)^{-1}f_{n\zeta}$ is in the pure state space of $\mathscr A$ whenever $f_{n\zeta} \neq 0$ [4, Theorem 3]. Now for fixed $A \in \mathscr A^+$ $\{\sum \{B_n \tau_{E_n}(A) \mid 1 \le n \le m\}\}_m$ is a monotonely increasing sequence which converges strongly to $\operatorname{Tr}(AB)$. There is a subset N of ν -measure 0 such that

$$\lim_{m} \sum \{f_{n\zeta}(A) \mid 1 \leq n \leq m\} = \operatorname{Tr}(BA)^{\hat{}}(\zeta)$$

for every $\zeta \notin N$. The restriction that $A \in \mathscr{A}^+$ can certainly be removed and so, we obtain the formula $\sum_n \int f_{n\zeta}(A) d\nu(\zeta) = \int \operatorname{Tr} (BA)^{\hat{}}(\zeta) d\nu(\zeta) = f(A)$ for every A in \mathscr{A} by the dominated convergence theorem.

We state some additional facts for type I algebras. Here we may assume $\mathscr{A} = \mathscr{Z}'$. The support X of ν is open and closed and corresponds to a projection P in \mathscr{Z} under the relation $\{\zeta \in Z \mid P^{\wedge}(\zeta) = 1\} = X$. Let E be an abelian projection of central support P. If $\zeta \in X$ and if $[\zeta]$ denotes the smallest closed two-sided ideal in \mathscr{A} containing ζ , then the factor space $\mathscr{A}E/[\zeta]$ becomes a Hilbert space $H(\zeta)$ with inner product $(A(\zeta), B(\zeta)) = \tau_E(B^*A)^{\wedge}(\zeta)$. Here $A(\zeta)$ denotes the image of A in $\mathscr{A}/[\zeta]$. Let Φ_{ζ} be the representation by left multiplication of \mathscr{A} with kernel $[\zeta]$ on $H(\zeta)$. There is a

sequence $\{P_k\}$ of mutually orthogonal projections in $\mathscr Z$ of sum P such that $\{\sum_n B_n P_k\}$ converges uniformly for each P_k (cf. [9, Theorem 4.1]). Let $X_k = \{\zeta \in Z \mid P_k \cap (\zeta) = 1\}$. For each $\zeta \in \bigcup X_k$ there is a normal functional f_ζ on the algebra L of bounded linear operators of $H(\zeta)$ with $f_\zeta \cdot \Phi_\zeta(A) = \operatorname{Tr}(BA) \cap (\zeta)$. Indeed, there is a normal functional $g_{n\zeta}$ on L with $g_{n\zeta} \cdot \Phi_\zeta = f_{n\zeta}$. Since the set $N = X - \bigcup X_k$ has ν -measure 0, we have that $f(A) = \int f_\zeta(A(\zeta)) d\nu(\zeta)$, [9, §4].

Let \mathscr{A} be a von Neumann algebra with center \mathscr{Z} . The set \mathscr{A}_{\sim} of all functionals of the module \mathscr{A} which are continuous in the $\sigma(\mathscr{A}, \mathscr{A}_{*})$ and $\sigma(\mathscr{Z}, \mathscr{Z}_{*})$ topologies of \mathscr{A} and \mathscr{Z} respectively is an algebraic \mathscr{Z} -module. The module \mathscr{A}_{\sim} is a closed subspace of the space \mathscr{A}^{\sim} of all bounded functionals of the module \mathscr{A} because the uniform limit of a sequence of σ -weakly continuous functionals of \mathscr{A} is σ -weakly continuous. Thus \mathscr{A}_{\sim} is a Banach \mathscr{Z} -module.

In passing we remark that analogues of theorems for functionals of \mathscr{A}_* may be formulated and proved for functionals of \mathscr{A}_\sim using Theorem 1. In particular, we may obtain a polar decomposition for functionals of \mathscr{A}_\sim [14] as well as a decomposition of functionals of \mathscr{A}_\sim into a linear combination of normal functionals. The proof of the latter statement is virtually identical with that of Theorem 4.12 of [9]. In particular, if ϕ is a hermitian functional of \mathscr{A}_\sim , then there is a projection $E \in \mathscr{A}$ such that $\phi_1(A) = \phi(AE)$ and $\phi_2(A) = -\phi(A(1-E))$ are normal functionals of the module \mathscr{A} . Also a Radon-Nikodym theorem [15] holds.

The next theorem is an analogue of a well-known result concerning linear functionals on a von Neumann algebra. The theorem though is potentially applicable to the theory of AW^* -algebras in a way precluded for linear functionals (cf. [13]) and so is interesting in its own right. We plan to explore this application in a future paper.

THEOREM 3. Let \mathscr{A} be a von Neumann algebra with center \mathscr{Z} . For each A in \mathscr{A} define the function F_A on \mathscr{A}_{\sim} by $F_A(\phi) = \phi(A)$. Then the function $A \to F_A$ defines an isometric isomorphism of the module \mathscr{A} onto the module $(\mathscr{A}_{\sim})^{\sim}$.

Proof. First it is easy to see that $F_A \in (\mathscr{A}_{\sim})^{\sim}$ for each $A \in \mathscr{A}$ and that the function $A \to F_A$ is a module homomorphism of \mathscr{A} into $(\mathscr{A}_{\sim})^{\sim}$. Now let \mathscr{Z}' be the commutator of \mathscr{Z} ; let $\varepsilon > 0$ be given. There is an abelian projection E in \mathscr{Z}' such that $\|E|A|E\| \ge \|A\| - \varepsilon$ where $|A| = (A^*A)^{1/2}$. Let U be a partial isometry of \mathscr{A} such that A = U|A| is the polar decomposition of A. Defining $\phi(B) = \tau_E(U^*B)$ for $B \in \mathscr{A}$, we see that $\|\phi(B)\|^2 \le \|\tau_E(U^*U)\| \|\tau_E(B^*B)\| \le \|B\|^2$ for every $B \in \mathscr{A}$. Thus ϕ is in the unit sphere of \mathscr{A}_{\sim} . However $\|F_A(\phi)\| \ge \|A\| - \varepsilon$. Because $\varepsilon > 0$ is arbitrary $\|F_A\| \ge \|A\|$. Since it is obviously true that $\|F_A\| \le \|A\|$, we have that $\|F_A\| = \|A\|$. Hence the map $A \to F_A$ is an isometry.

We complete the proof by showing $A \to F_A$ is onto $(\mathscr{A}_{\sim})^{\sim}$. Let f be an element of $(\mathscr{A}_{\sim})^{\sim}$. For each ϕ in \mathscr{Z}'_{\sim} let $F(\phi)$ denote the restriction of ϕ to \mathscr{A} . Then F is a continuous homomorphism of the \mathscr{Z} -module \mathscr{Z}'_{\sim} onto the \mathscr{Z} -module \mathscr{A}_{\sim} . This means that $f \cdot F$ is an element of $(\mathscr{Z}'_{\sim})^{\sim}$. There is an element A in \mathscr{Z}' such that

 $f \cdot F(\phi) = \phi(A)$ for every ϕ in \mathscr{Z}'_{\sim} [9, Theorems 4.10 and 4.13]. We show that $A \in \mathscr{A}$. Indeed, if $A \notin \mathscr{A}$ then there is a unitary operator V in the commutator \mathscr{A}' of \mathscr{A} such that $VAV^* \neq A$. There is an abelian projection G in \mathscr{Z}' such that $GVAV^*G \neq GAG$. Let G' be the abelian projection in \mathscr{Z}' given by $G' = V^*GV$. If $\phi = \tau_{G'} - \tau_{G}$, then $\phi(B) = 0$ for every B in \mathscr{A} ; but $\phi(A) = \tau_{G}(VAV^* - A) \neq 0$. Thus $0 = f \cdot F(\phi) = \phi(A) \neq 0$. This is impossible. So we conclude that $A \in \mathscr{A}$. Now by the preliminary remarks concerning the decomposition of elements of \mathscr{A}_{\sim} into a linear combination of normal functionals and by Theorem 2 we find that the range of F is \mathscr{A}_{\sim} . If $\phi \in \mathscr{A}_{\sim}$, then there is a $\psi \in \mathscr{Z}'_{\sim}$ such that $F(\psi) = \phi$ and thus $f(\phi) = \psi(A) = \phi(A)$ since $A \in \mathscr{A}$. This completes the proof. Q.E.D.

3. Characterization of type I algebras. It is known that a C*-algebra that can be expressed as the second dual of a Banach space is a von Neumann algebra with minimal projections ([13], [7], [19]). So linear functionals are suitable for characterizing type I factor algebras but unsuitable for characterizing algebras with arbitrary centers. The object of this section is to bring the center into consideration by considering module homomorphisms and thereby to obtain a description of type I algebras.

THEOREM 4. Let \mathscr{Z} be a commutative von Neumann algebra and let \mathscr{A} be a C^* -algebra with center \mathscr{Z} . Let \mathscr{M} be a Banach \mathscr{Z} -module. If \mathscr{A} is the dual \mathscr{M}^{\sim} of \mathscr{M} , then \mathscr{A} is a von Neumann algebra and every functional $A \to \phi(A)$ of \mathscr{A} into \mathscr{Z} for fixed ϕ in \mathscr{M} is a σ -weakly continuous functional of the module \mathscr{A} .

Note. We write $\phi(A)$ to indicate the functional $A \in \mathcal{A}$ applied to $\phi \in \mathcal{M}$.

Proof. Let \mathscr{B} be the linear manifold in the dual \mathscr{A}^* of \mathscr{A} generated by the set $\{f \cdot \phi \mid f \in \mathscr{Z}_*, \phi \in \mathscr{M}\}$. We show that the dual \mathscr{B}^* of \mathscr{B} is identified with \mathscr{A} . Then by Sakai's Theorem [13, Theorem 1 and Remark 1] \mathscr{A} is a von Neumann algebra and the functionals of \mathscr{B} are σ -weakly continuous on \mathscr{A} . In fact the closure of \mathscr{B} in \mathscr{A}^* is equal to the associated space of \mathscr{A} [12, 22.6]. This means that the elements of \mathscr{M} are σ -weakly continuous. We proceed to identify \mathscr{B}^* with \mathscr{A} . Let Φ be an element of \mathscr{B}^* . Let H be a Hilbert space on which \mathscr{Z} may be represented as a von Neumann algebra. The functional $w_{x,y} \cdot \phi$ is in \mathscr{B} for every x and y in H and $\phi \in \mathscr{M}$. Here $w_{x,y}(A) = (Ax, y)$. Setting $\langle x, y \rangle_{\phi} = \Phi(w_{x,y} \cdot \phi)$ we obtain for each $\phi \in \mathscr{M}$ a bilinear form on H. Since $|\langle x, y \rangle_{\phi}| \leq ||x|| ||y|| ||\phi|| ||\Phi||$, the form is continuous and hence there is a unique bounded linear operator A_{ϕ} on H such that $\langle x, y \rangle_{\phi} = (A_{\phi}x, y)$ for every x and y in H. If B is an arbitrary element in the commutator \mathscr{Z}' of \mathscr{Z} on H, then $(A_{\phi}Bx, y) = (BA_{\phi}x, y)$ for every x and y in H because $w_{Bx,y} \cdot \phi = w_{x,B^*y} \cdot \phi$. This means A_{ϕ} is in the double commutator of \mathscr{Z} which is \mathscr{Z} . The map $\phi \to A_{\phi}$ is easily seen to be a module homomorphism of \mathscr{M} into \mathscr{Z} . It is bounded because

$$||A_{\phi}|| = \text{lub}\{|\Phi(w_{x,y}\cdot\phi)| \mid ||x|| \le 1, ||y|| \le 1\} \le ||\Phi|| ||\phi||.$$

By hypothesis there is a unique A_0 in $\mathscr A$ such that $\phi(A_0) = A_\phi$ for every $\phi \in \mathscr M$. Then for every $g \in \mathscr B$ we have that $\Phi(g) = g(A_0)$.

For each $A \in \mathscr{A}$ let G_A be the element of \mathscr{B}^* defined by $G_A(g) = g(A)$. The map $A \to G_A$ of \mathscr{A} into \mathscr{B}^* is a linear function of \mathscr{A} whose range is \mathscr{B}^* by the preceding paragraph. We complete the proof by showing that this map is an isometry. Because \mathscr{B} is a subset of \mathscr{A}^* we have that $\|G_A\| \leq \|A\|$. On the other hand the two relations

lub {
$$\|\phi(A)\| \mid \phi \in \mathcal{M}, \|\phi\| \le 1$$
} = $\|A\|$

and

lub {
$$|f \cdot \phi(A)| | f \in \mathcal{Z}_{*}, ||f|| \leq 1$$
} = $||\phi(A)||$

imply the relation $||A|| \le ||G_A||$. So $||A|| = ||G_A||$. Q.E.D.

Before proceeding we make some observations. Assume that \mathcal{M} is a Banach modulo over a commutative von Neumann algebra \mathscr{Z} whose second dual \mathscr{M}^{\sim} is a C^* -algebra \mathscr{A} with center \mathscr{Z} . Let \mathscr{M}' be the Banach \mathscr{Z} -module \mathscr{M} reduced module $\mathscr{K} = \bigcap$ {kernel $\phi \mid \phi \in \mathscr{M}^{\sim}$ } with the norm ||A'|| = glb { $||A + B|| \mid B \in \mathscr{K}$ }. Here A' is the image in \mathscr{M}' of A in \mathscr{M} under the canonical homomorphism. It is standard to show that \mathscr{M}^{\sim} is identified with (i.e. is isometric isomorphic to) the dual \mathscr{M}'^{\sim} under the correspondence $\phi \to \phi'$ where $\phi'(A') = \phi(A)$. By replacing \mathscr{M} by \mathscr{M}' if necessary we may assume that $\mathscr{K} = (0)$. For each $A \in \mathscr{M}$ the function $\phi \to \phi(A)$ defines an element F_A of $\mathscr{M}^{\sim} = \mathscr{A}$. The map $A \to F_A$ is an isomorphism of \mathscr{M} into a submodule \mathscr{N} of the module \mathscr{A} . Setting $\phi'(A) = \phi(F_A)$ for each $\phi \in \mathscr{N}^{\sim}$ and $A \in \mathscr{M}$, we obtain a functional ϕ' of \mathscr{M}^{\sim} because $||F_A|| \le ||A||$. It satisfies the relation

$$\begin{aligned} \|\phi\| &= \text{lub} \{ \|\phi(A)\| \mid A \in \mathcal{N}, \|A\| \leq 1 \} \\ &\geq \text{lub} \{ \|\phi'(A)\| \mid A \in \mathcal{M}, \|A\| \leq 1 \} = \|\phi'\| \\ &\geq \text{lub} \{ \|\phi'(A)\| \mid A \in \mathcal{A}, \|A\| \leq 1 \} \geq \|\phi\|. \end{aligned}$$

This means that $\phi \to \phi'$ is an isometric isomorphism of \mathcal{N}^{\sim} onto \mathcal{M}^{\sim} . Because it is well known that the dual of the closure of \mathcal{N} is equal to \mathcal{N}^{\sim} , we may assume that \mathcal{M} is embedded in \mathcal{A} . For every A in \mathcal{M} we have that

(1)
$$||A|| = \text{lub} \{ ||\phi(A)|| \mid \phi \in \mathcal{M}^{\sim}, ||\phi|| \leq 1 \}$$

because $\mathcal{M}^{\sim} = \mathcal{A}$ and for every $\phi \in \mathcal{M}^{\sim}$ we have that

(2)
$$\|\phi\| = \text{lub} \{ \|\phi(A)\| \mid A \in \mathcal{M}, \|A\| \le 1 \}$$

$$\le \text{lub} \{ \|\phi(A)\| \mid A \in \mathcal{A}, \|A\| \le 1 \} \le \|\phi\|.$$

So we are always justified in assuming that \mathcal{M} is embedded in \mathcal{A} and that (1) and (2) hold.

THEOREM 5. Let \mathcal{A} be a von Neumann algebra with center \mathcal{L} . If \mathcal{M} is a closed submodule of the module \mathcal{A} whose second dual \mathcal{M}^{\sim} is equal to \mathcal{A} , then \mathcal{M} is σ -weakly dense in \mathcal{A} .

Proof. We use the same notation as Theorem 4. Every $f \in \mathcal{B}$ has the form $f = \sum \{f_i \cdot \phi_i \mid 1 \le i \le n\}$ where $f_i \in \mathcal{Z}_*$ and $\phi_i \in \mathcal{M}^-$. Because every f_i may be written as a linear combination of positive functionals in \mathcal{Z}_* , we may assume every f_i is positive. Then $\sum f_i = w_x$ for some $x \in H$. By the Radon-Nikodym theorem there is a $C_i \in \mathcal{Z}^+$ such that $f_i = w_{C_i x}$ $(1 \le i \le n)$. Hence we may assume that f has the form $f = w_x \cdot \phi$ for some $\phi \in \mathcal{M}^-$.

We now obtain a contradiction by assuming that the complement of the weak closure \mathcal{N} of the unit sphere of \mathcal{M} with respect to the unit sphere \mathcal{A}_1 of \mathcal{A} contains an element B. Standard separation theorems [12, 14.2] give an $f \in \mathcal{A}_*$ such that lub $\{\operatorname{Re} f(A) \mid A \in \mathcal{N}\} < \operatorname{Re} f(B)$. Here $\operatorname{Re} \alpha$ denotes the real part of α . Because \mathcal{B} is uniformly dense in \mathscr{A}_* and because $\mathscr{N} \subset \mathscr{A}_1$, there is by the preceding paragraph an $x \in H$ and a $\phi \in \mathcal{M}^{\sim}$ such that lub $\{\operatorname{Re} w_x \cdot \phi(A) \mid A \in \mathcal{N}\} < \operatorname{Re} w_x \cdot \phi(B)$. We show that $\{\operatorname{Re} \phi(A) \mid A \in \mathcal{N}\} = X$ is monotonely increasing in \mathscr{Z} . Here $\operatorname{Re} \phi(A) = X$ $(\phi(A) + \phi(A)^*)/2$. For A_i (i = 1, 2) in \mathcal{N} let $U_i^* |\phi(A_i)| = \phi(A_i)$ be the polar decomposition of $\phi(A_i)$ in \mathscr{Z} . The element $\phi(U_iA_i)$ is in X because $U_iA_i \in \mathscr{N}$. Note that Re $\phi(A_i) \le |\phi(A_i)| = \phi(U_i A_i)$. There is a central projection P such that $P\phi(U_1 A_1)$ $\leq P\phi(U_2A_2)$ and $(1-P)\phi(U_2A_2) \leq (1-P)\phi(U_1A_1)$ and so the element $A = PU_2A_2$ $+(1-P)U_1A_1$ in $\mathcal N$ satisfies the relation Re $\phi(A_i) \leq \phi(A)$ for i=1, 2. This shows X is monotonely increasing. Because X is bounded above in \mathcal{Z} , it is possible to find a net $\{A_n\}$ in \mathcal{N} such that $\{\operatorname{Re} \phi(A_n)\}$ converges strongly to the least upper bound C_0 of X. Because \mathcal{N} is compact in the weak topology, there is a subnet $\{A_{n_i}\}$ which converges weakly to an element $A_0 \in \mathcal{N}$. However Re $\phi(A_0) = C_0$ due to the weak continuity of ϕ (Theorem 4). By multiplying $\phi(A_0)$ by an appropriate partial isometry in \mathscr{Z} we may assume that $\phi(A_0) = C_0$. For every projection P in \mathscr{Z} we have $||P\phi|| = ||PC_0||$. On the contrary, if $||PC_0|| < ||P\phi||$, then $Q(C_0 + \varepsilon) \le (||PC_0|| + \varepsilon)Q$ $\leq Q\phi(A)$ for suitable $A \in \mathcal{M} \cap \mathcal{A}_1$, $\varepsilon > 0$ and central projection Q with $0 < Q \leq P$ because $||P\phi|| = \text{lub } \{||P\phi(C)|| \mid C \in \mathcal{M} \cap \mathcal{A}_1\}$. This contradicts the definition of C_0 . Therefore $||P\phi|| = ||PC_0||$ for every central projection P. Now if $U^*|\phi(B)| = \phi(B)$ is the polar decomposition of $\phi(B)$, then Re $w_x(\phi(B)) = w_x(\text{Re }\phi(B)) \leq w_x(|\phi(B)|)$ $= w_x(\phi(UB))$. There is no loss of generality in assuming $\phi(B) \in \mathcal{Z}^+$. We see that $\phi(B) \le C_0$; otherwise there is a projection $P \ne 0$ in \mathscr{Z} and an $\varepsilon > 0$ such that $P(C_0 + \varepsilon)$ $\leq P\phi(B)$. This means that $\|PC_0\| < \|P\phi\|$ and that is impossible. However $w_x \cdot \phi(B)$ $\leq w_x(C_0) = w_x(\phi(A_0))$ is obtained. Because $A_0 \in \mathcal{N}$ we have reached a contradiction. Therefore $\mathcal{N} = \mathcal{A}_1$. Q.E.D.

COROLLARY. The module \mathcal{M}^{\sim} is equal to the module \mathcal{A}_{\sim} of all σ -weakly continuous functionals of the module \mathcal{A} .

Proof. If $\phi \in \mathcal{A}_{\sim}$, then the restriction $\phi | \mathcal{M}$ of ϕ to \mathcal{M} defines a bounded functional of the module \mathcal{M} . There is a $\psi \in \mathcal{M}^{\sim}$ such that $\psi = \phi | \mathcal{M}$. Because $\psi \in \mathcal{A}_{\sim}$ (Theorem 4) and because \mathcal{M} is σ -weakly dense in \mathcal{A} , we have that $\psi = \phi$. So $\mathcal{A}_{\sim} \subset \mathcal{M}^{\sim}$. Since $\mathcal{M}^{\sim} \subset \mathcal{A}_{\sim}$ (Theorem 4), we have $\mathcal{A}_{\sim} = \mathcal{M}^{\sim}$. Q.E.D.

Let \mathcal{M} be a Banach module over the commutative von Neumann algebra \mathcal{Z} ;

the topology induced on the dual \mathcal{M}^{\sim} of the module \mathcal{M} by the family of seminorms $p_{f,A}(\phi) = |f(\phi(A))|$ $(f \in \mathcal{Z}_*, A \in \mathcal{M})$ will be called the weak topology of \mathcal{M}^{\sim} .

THEOREM 6. Let \mathcal{M} be a Banach module over the commutative σ -finite von Neumann algebra \mathcal{Z} . Then the unit sphere \mathcal{M}_{1}^{∞} of \mathcal{M}^{∞} is compact in the weak topology.

Proof. Let x be a separating unit vector for \mathscr{Z} . Let $\{\phi_n\}$ be a net in \mathscr{M}_1^{\sim} . A subnet $\{w_x \cdot \phi_n \mid n \in S\}$ of $\{w_x \cdot \phi_n\}$ converges in the $\sigma(\mathscr{M}^*, \mathscr{M})$ -topology of the dual \mathscr{M}^* of \mathscr{M} to the functional f in the unit sphere of \mathscr{M}^* . Because $|f(CD^*B)| \leq ||B|| ||Cx|| ||Dx||$ for each $B \in \mathscr{M}$ and $C, D \in \mathscr{Z}$, the relation $\langle Cx, Dx \rangle_B = f(CD^*B)$ defines a continuous bilinear functional on a dense linear manifold of the subspace

$$K = \text{closure } \{Cx \mid C \in \mathcal{Z}\}.$$

This bilinear functional may be uniquely extended to a bilinear functional $\langle y, z \rangle_B$ of K such that $|\langle y, z \rangle_B| \le \|B\| \|y\| \|z\|$ for every y and z. There is a unique bounded linear operator $A' = A'_B$ on K such that $(A'y, z) = \langle y, z \rangle_B$ for all y and z. The projection E of the Hilbert space onto K is an abelian projection of the commutator \mathscr{Z}' of \mathscr{Z} . If $A \in \mathscr{Z}$, then (A'AECx, Dx) = (AEA'Cx, Dx) for every C and D in \mathscr{Z} . Thus (AE)A' = A'(AE), and because $A \in \mathscr{Z}$ is arbitrary, we find that A' is an element of the commutator $E\mathscr{Z}'E$ of $\mathscr{Z}E$ on K. There is unique $\phi(B)$ in \mathscr{Z} , because the central support of E is 1, such that $\phi(B)E = A'_B$. By the uniqueness of $\phi(B)$ we may conclude that $B \to \phi(B)$ is a module homomorphism of \mathscr{M} into \mathscr{Z} and by the relation $|(\phi(B)y, z)| \le |B| ||y|| ||z||$ for all y and z in K we may conclude that $||\phi(B)|| = ||\phi(B)E|| \le ||B||$. So $\phi \in \mathscr{M}_1^{\sim}$. From the fact that $\{||\phi_n(B)|| ||n| \in S\}$ is bounded for fixed $B \in \mathscr{M}$ and from the fact that $\{Cx \mid C \in \mathscr{Z}\}$ is dense in K, we see that $\{\phi_n(B)E \mid n \in S\}$ converges weakly to $\phi(B)$ for every $B \in \mathscr{M}$ [2, I, §4, Theorem 2]. Q.E.D.

A subset \mathscr{K} of a module \mathscr{M} over the commutative von Neumann algebra \mathscr{Z} is said to be \mathscr{Z} -convex if CA + (1 - C)B is in \mathscr{K} for every A and B in \mathscr{K} and C in \mathscr{Z} with $0 \le C \le 1$. A nonvoid \mathscr{Z} -convex subset \mathscr{K}' of a \mathscr{Z} -convex subset \mathscr{K} of \mathscr{M} is said to be a support of \mathscr{K} if $CA + (1 - C)B \in \mathscr{K}'$ for A and B in \mathscr{K} and C in \mathscr{Z} with 0 < C < 1 implies $A \in \mathscr{K}'$ and $B \in \mathscr{K}'$. By 0 < C < 1 it is meant that C is strictly between 0 and 1, i.e. the spectrum of C is contained in the open interval (0, 1). A point A of a \mathscr{Z} -convex subset \mathscr{K} of \mathscr{M} is said to be an extreme point of \mathscr{K} if $\{A\}$ is a support of \mathscr{K} .

The following is a Krein-Milman Theorem for \mathcal{M}^{\sim} .

THEOREM 7. Let \mathcal{M} be a Banach \mathcal{Z} -module whose second dual \mathcal{M}^{\sim} is a von Neumann algebra \mathcal{A} with center \mathcal{Z} . Let P be a nonzero projection in \mathcal{Z} . Then there is an extreme point ϕ in the unit sphere \mathcal{S} of positive functionals of \mathcal{A}_{\sim} such that $P\phi \neq 0$.

Proof. We may assume that P is σ -finite since every nonzero projection in \mathscr{Z} majorizes a nonzero σ -finite projection. Let $\mathscr{H} = \{ \operatorname{Re} \phi | \phi \in \mathscr{A}_{\sim} \text{ and } P\phi = \phi \}$. Here

Re $\phi(A) = (\phi(A) + \phi(A)^*)/2$. The set \mathcal{H} has a natural module structure over the ring of hermitian elements in \mathscr{Z} . The seminorms $p_{f,A}$ $(f \in \mathscr{Z}_*, A \in \mathscr{M})$ induce a weak topology on H in which the \mathscr{Z} -convex subset $\mathscr{H}_1 = \{ \text{Re } \phi \mid \phi \in \mathscr{A}_{\sim}, P\phi = \phi, \}$ $\|\phi\| \le 1$ is compact since the unit sphere of \mathcal{M}^{\sim} is compact in the weak topology and since the adjoint operation of \mathscr{Z} is weakly continuous. Suppose that \mathscr{H}_1 has a nonzero extreme point ϕ' . We show that $\mathscr S$ has a nonzero extreme point ψ such that $P\psi = \psi$. Let ϕ be an element of the unit sphere of \mathscr{A}_{\sim} such that $P\phi = \phi$ and Re $\phi = \phi'$. If $C\theta + (1 - C)\theta' = \phi$ for θ , θ' in the unit sphere of \mathscr{A}_{\sim} and C strictly between 0 and 1 in \mathscr{Z} , then $C \operatorname{Re} \theta + (1 - C) \operatorname{Re} \theta' = \phi'$ and consequently ϕ' = Re θ = Re θ' . This means that $\phi = \theta = \theta'$ and thus that ϕ is an extreme point of the unit sphere of \mathscr{A}_{\sim} . Using the polar decomposition for ϕ , we obtain a partial isometric operator U in $\mathscr{A}P$ such that $\psi(A) = \phi(UA)$ defines a functional in \mathscr{S} and such that $\psi(U^*A) = \phi(A)$ for every A in \mathscr{A} . If $\psi = C\theta + (1-C)\theta'$ for $\theta, \theta' \in \mathscr{S}$ and $C \in \mathcal{Z}$ with 0 < C < 1, then $\phi(A) = \theta(U^*A) = \theta'(U^*A)$ for every $A \in \mathcal{A}$. But $\psi(U^*U) = \psi(1)$ and so both θ and θ' vanish on the projection $1 - U^*U$. By the Cauchy-Schwarz inequality we have that $\theta(A) = \theta(U^*UA)$ and $\theta'(A) = \theta'(U^*UA)$ for every $A \in \mathcal{A}$. We then see that $\psi = \theta = \theta'$ and thus that ψ is a nonzero extreme point of \mathcal{S} such that $P\psi = \psi$. We complete the proof by showing that \mathcal{H}_1 has a nonzero extreme point.

Now let \mathscr{F} be a maximal family with the finite intersection property of compact supports of \mathscr{H}_1 . The set $\mathscr{H}_0 = \bigcap \mathscr{F}$ is nonvoid and evidently a compact support of \mathscr{H}_1 . We show that \mathscr{H}_0 contains a single point. On the contrary if ϕ and ψ are two distinct points in \mathscr{H}_0 , there is an element A in \mathscr{M} such that $\phi(A) \neq \psi(A)$. Indeed, an element in \mathscr{A}_{\sim} which vanishes under multiplication by 1-P is uniquely determined by its values on the elements of \mathscr{M} . The set $\{\theta(A) \mid \theta \in \mathscr{H}_0\}$ is a monotonely increasing net in set of hermitian elements of \mathscr{Z} and therefore the set

$$\mathcal{H}_0(A_0) = \{ \theta \in \mathcal{H}_0 \mid \theta(A) = A_0 = \text{lub} \{ \theta'(A) \mid \theta' \in \mathcal{H}_0 \} \}$$

is nonvoid. This is an obvious variation of the statement concerning the set X in Theorem 5. The set $\mathscr{H}_0(A_0)$ is certainly \mathscr{Z} -convex and weakly compact. It is a support of \mathscr{H}_0 for $C\theta(A)+(1-C)\theta'(A)=A_0$ for θ , θ' in \mathscr{H}_0 and C in \mathscr{Z} with 0< C<1 implies $\theta(A)=\theta'(A)=A_0$. However the compact support $\mathscr{H}_0(A_0)$ of \mathscr{H}_0 is a compact support of \mathscr{H}_1 which cannot contain both ϕ and ϕ . This contradicts the maximality of \mathscr{F} . Hence we must conclude that \mathscr{H}_0 contains a single point ϕ_0 . We have that $\phi_0\neq 0$. On the contrary, if E is an abelian projection in the commutator of \mathscr{Z} which has central support P, then $\theta=\operatorname{Re}\ \tau_E\in\mathscr{H}_1$ (Corollary, Theorem 5) and $(\theta-\theta)/2=0$. But $\theta=-\theta=0$ is evidently not true. So $\phi_0\neq 0$. Q.E.D.

Let $\mathscr A$ be a von Neumann algebra with center $\mathscr Z$; a positive functional $\phi \in \mathscr A^{\sim}$ is said to be $\mathscr Z$ -irreducible on $\mathscr A$ if given a positive functional ψ in $\mathscr A^{\sim}$ with $\psi \leq \phi$ then there is a $C \in \mathscr Z^+$ such that $C\phi = \psi$.

THEOREM 8. Let \mathscr{A} be a von Neumann algebra with center \mathscr{Z} . For a functional ϕ

in the unit sphere $\mathscr S$ of the set of positive functionals of $\mathscr A^\sim$ the following are equivalent: (1) ϕ is an extreme point of $\mathscr S$; and (2) ϕ (1) is a projection of $\mathscr Z$ and ϕ is $\mathscr Z$ -irreducible.

Proof. Let ϕ be an extreme point of \mathscr{S} . Let P be the support of the positive element $\phi(1)$ in the unit sphere of \mathscr{Z} . If there is a ζ in the spectrum Z of \mathscr{Z} such that $0 < \phi(1)^{\hat{}}(\zeta) < 1$, there is an $\varepsilon > 0$ and a projection Q majorized by P with $Q^{\hat{}}(\zeta) = 1$ and $\varepsilon Q \leq Q\phi(1) \leq (1-\varepsilon)Q$. So $\|Q\phi\| \leq 1-\varepsilon$ and $\theta = (1-\varepsilon)^{-1}$. $Q\phi + (1-Q)\phi$ is a point of \mathscr{S} . However $\phi = (1-\varepsilon)\theta + \varepsilon(1-Q)\phi$. This gives a contradiction. So we conclude that $\phi(1) = P$. Now let $\psi \in \mathscr{S}$ and $\psi \leq \phi$. Setting $\theta = \phi - \psi$ we assume that $\theta(1)^{\hat{}}(\zeta) \neq 0$ and $\theta(1)^{\hat{}}(\zeta) \neq 1$ for some $\zeta \in Z$. There is an $\varepsilon > 0$ and a central projection Q such that $Q^{\hat{}}(\zeta) = 1$ and $\varepsilon Q \leq Q\theta(1) \leq (1-\varepsilon)Q$. This means that $B\theta(1) = Q$ and $D\psi(1) = Q$ for suitable B and D in $(\mathscr{Z}Q)^+$. Setting $C = ((1-Q)/2) + Q\theta(1)$, we obtain a central element strictly between 0 and 1 satisfying the relation

$$\phi = C(B\theta + (1 - Q)\phi) + (1 - C)(D\psi + (1 - Q)\phi).$$

Because $B\theta + (1-Q)\phi$ and $D\psi + (1-Q)\phi$ are in \mathscr{S} , $D\psi = Q\phi$ and so $Q\psi = Q\psi(1)\phi$. If $\{Q_n\}$ is a maximal set of mutually orthogonal nonzero central projections such that $Q_n\psi(1)\phi = Q_n\psi$ for each Q_n , then $\sum Q_n = P$. This proves that $\psi = P\psi = \psi(1)\phi$. Thus, we see that ϕ is \mathscr{Z} -irreducible.

Conversely, let ϕ be \mathscr{Z} -irreducible and let $\phi(1)$ be a projection P. If $\phi = C\psi + (1-C)\theta$ for ψ , $\theta \in \mathscr{S}$ and 0 < C < 1 in \mathscr{Z} , then there is a $D \in \mathscr{Z}^+$ such that $C\psi = D\phi$. Then the two relations $C^{-1}DP = \psi(1)$ and $P = C\psi(1) + (1-C)\theta(1)$ imply $P = \psi(1)$. So $\psi = C^{-1}D\phi = \phi$. Similarly $\theta = \phi$. This proves ϕ is an extreme point of \mathscr{S} . Q.E.D.

Theorem 9. Let \mathscr{Z} be a commutative von Neumann algebra and let \mathscr{A} be a C^* -algebra with center \mathscr{Z} . Then \mathscr{A} is a type I von Neumann algebra if and only if the module \mathscr{A} is the second dual \mathscr{M}^{\sim} of a Banach \mathscr{Z} -module \mathscr{M} .

Proof. If \mathscr{A} is a type I von Neumann algebra, then \mathscr{A} is the second dual of the closed two-sided I_a of \mathscr{A} generated by the abelian projections of \mathscr{A} [9, §4].

Conversely, it is already known that \mathscr{A} is a von Neumann algebra (Theorem 4) and so it is sufficient to prove that every nonzero projection P of \mathscr{Z} majorizes a nonzero abelian projection. Let ϕ be an extreme point of the set of positive functionals \mathscr{S} of the unit sphere of \mathscr{A}_{\sim} such that $P\phi \neq 0$. Then it is easy to see that $P\phi$ is an extreme point of \mathscr{S} and so we assume that $P\phi = \phi$. Let x be a unit vector in the Hilbert space H of \mathscr{A} such that $\phi(1)x = x$ (Theorem 8). Let g be a positive functional on \mathscr{A} majorized by $w_x \cdot \phi$. If $A \in \mathscr{Z}^+$, then $g(A) \leq w_x(\phi(1)A) = w_x(A)$. There is an element C in \mathscr{Z}^+ such that g(A) = (ACx, Cx) for all A in \mathscr{Z} . By Theorem 1 there is a normal functional ψ of the module \mathscr{A} such that $g = w_{Cx} \cdot \psi$ because g is normal. If E is the projection of H onto closure $\{Ax \mid A \in \mathscr{Z}\}$ then $C^2\psi(A)E \leq \phi(A)E$ for every A in \mathscr{A}^+ since $(C^2\psi(A)Ey, Ey) \leq (\phi(A)Ey, Ey)$ for every y in E(H). However

the projection E is in the commutator of \mathscr{Z} on H and so if Q is the central support of E we have that $C^2Q\psi(A) \leq Q\phi(A) \leq \phi(A)$ for every A in \mathscr{A}^+ . There is a $D \in \mathscr{Z}^+$ such that $C^2Q\psi = D\phi$ (Theorem 8). Thus $g(A) = w_x \cdot \phi(DA)$ for all A in \mathscr{A} . This means that the projection in \mathscr{A} corresponding to closure $\{A'x \mid A' \in \mathscr{A}'\}$ where \mathscr{A}' is the commutator of \mathscr{A} is abelian in \mathscr{A} [8, §2]. This completes the proof. Q.E.D.

REMARK. Actually we have proved that a normal functional f on $\mathscr A$ is centrally reducible (cf. [8, §2]) if and only if there is a $\mathscr Z$ -irreducible normal functional ϕ of the module $\mathscr A$ such that $f \cdot \phi = f$.

BIBLIOGRAPHY

- 1. J. Dixmier, Les fonctionelles linéaires sur l'ensemble des opérateurs d'un espace de Hilbert, Ann. of Math. 51 (1950), 387-408.
 - 2. ——, Les algèbres d'opérateurs dans l'espace hilbertien, Gauthier-Villars, Paris, 1957.
 - 3. ——, Les C*-algèbres et leur représentations, Gauthier-Villars, Paris, 1964.
- 4. J. Glimm, A Stone-Weierstrass theorem for C*-algebras, Ann. of Math. (2) 72 (1960), 216-244.
 - 5. ——, Typė I C*-algebras, Ann. of Math. (2) 73 (1961), 572-612.
- 6. R. Godement, Sur la théorie des représentations unitaires, Ann. of Math. (2) 53 (1951), 68-124.
- 7. A. Grothendieck, Un résultat sur le dual d'une C*-algèbre, J. Math. Pures Appl. (9) 36 (1957), 97-108.
- 8. H. Halpern, An integral representation of a normal functional on a von Neumann algebra, Trans. Amer. Math. Soc. 125 (1966), 32-46.
- 9. ——, A spectral decomposition for self-adjoint elements in the maximum GCR ideal of a von Neumann algebra with applications to noncommutative integration theory, Trans. Amer. Math. Soc. 133 (1968), 281-306.
 - 10. I. Kaplansky, Algebras of type I, Ann. of Math. (2) 56 (1952), 460-472.
 - 11. ——, Modules over operator algebras, Amer. J. Math. 75 (1953), 839-858.
 - 12. J. Kelly and I. Namioka, Linear topological spaces, Van Nostrand, Princeton, N. J., 1963.
 - 13. S. Sakai, A characterization of W*-algebras, Pacific J. Math. 6 (1956), 763-773.
 - 14. —, On linear functionals of W*-algebras, Proc. Japan Acad. 34 (1958), 571-574.
- 15. ——, A Radon-Nikodym theorem for W*-algebras, Bull. Amer. Math. Soc. 71 (1965), 149-151.
 - 16. R. Schatten, A theory of cross spaces, Princeton Univ. Press, Princeton, N. J., 1950.
- 17. I. E. Segal, *Decomposition of operator algebras*. I, II, Mem. Amer. Math. Soc. No. 9 (1951), 67 pp. and 66 pp.
- 18. J. Taylor, *The Tomita decomposition of rings of operators*, Trans. Amer. Math. Soc. 113 (1964), 30-39.
- 19. Z. Takeda, On the representation of operator algebras. II, Tôhoku Math. J. 6 (1954), 299-304.
- 20. M. Tomita, Representations of operator algebras, Math. J. Okayama Univ. 3 (1954), 142-173.

ILLINOIS INSTITUTE OF TECHNOLOGY, CHICAGO, ILLINOIS